b,
5

<

0 SAPIENZA

N

UNIVERSITA DI ROMA

Seismic vS. aseismic
deformation in fault rocks and
rock deformation experiments

Cristiano Collettini

INGV

.
"he,

European Research Council

erc SEVENTH FRAMEWORK PROGRAMME
"Ideas” Starting Grant M
SEVENTH FRAMEWORK
PROGRAMMI

. ..' .'...:.. :.,'.. ." GLA SS 3 2 5 9 2 5 6







Our understanding of the mechanics of earthquakes and faulting

Seismologists/Geophysicists Geologists

‘n;leg'as*ia fault s
w-&gﬂ'?;
=

Experimentalists




Our understanding of the mechanics of earthquakes and faulting

Seismologists/Geophysicists Geologists

Seismological and geodetic data
Fast (s) and slow (d-y) deformation

III

“"Norma
Afterslip

VLF events

Slow earthquakes
Creep

Earthquakes

Remote techniques

Fault rocks ?
Deformation mech?
Evolution with time?

Experimentalists




Our understanding of the mechanics of earthquakes and faulting

Seismologists/Geophysicists Geologists

Study of ancient and exhumed faults
Long-term deformation (up to Ma)

Textural evolution
Mineralogical evolution
Fluid involvement

g
=
S
<
@
)
@
e

No seismic signals

Normal earthquakes ?
Afterslip ?

Creep ?

LFE ?

Experimentalists




Our understanding of the mechanics of earthquakes and faulting

Seismologists/Geophysicists Geologists

Experimentalists
Test physical properties of fault rocks

Reproduce the physics of faulting

Friction, velocity dependence of friction, fluid flow, microEQs

Scaling problem between experimental (mm-cm) faults and
natural (km) faults




Our understanding of the mechanics of earthquakes and faulting

Seismologists/Geophysicists Geologists
Seismological and geodetic data Study of ancient and exhumed faults
Fast (s) and slow (d-y) deformation Long-term deformation (up to Ma)
“Normal” Earthquakes Textural evolution
Afterslip Mineralogical evolution

VLF events
Slow earthquakes
Creep

Fluid involvement

Remote techniques [F& No seismic signals

Fault rocks ? Normal earthquakes ?

Deformation mech? Afterslip ?
Evolution with time? : : Creep ?
Experimentalists LFE ?

Test physical properties of fault rocks
Reproduce the physics of faulting

Friction, velocity dependence of friction, fluid flow, microEQs

Scaling problem between experimental (mm-cm) faults and
natural (km) faults




The spectrum of fault slip-behavior documented during this week is
the result of different slip processes occurring along faults. These
processes produce fault rocks.
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Introduction

Natural fault rocks and microstructures
Lab. experiments for slip behavior and microstructures

1) Fault structure, frictional properties and mixed-mode
fault slip behavior of LANF

2) Heterogeneous strength and fault zone complexity of
carbonate-bearing thrusts

3) Fault structure and slip localization in carbonate-bearing
normal faults

Future directions

Experiments on the role of fluid pressure in fault stability
Heterogeneous faults in the lab



Fault zone structure
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1) Undeformed Host Rock

" 2) Damage Zone
Fault Zone { 3) Foliated Cataclasite 7
| 4) Ultracataclasite Layer  Faul-Core

Chester et al., JGR, 93;

Fault core: Damage zone:

Is the structural, lithologic, Is the network of subsidiary
morphologic portion of the fault structures that bound the fault
zone where most of the core

displacement is accumulated



Median Tectonic Line, Japan
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Carboneras fault, Spain
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Along the fault zones, fault rocks are the result of
different deformation processes

g




Fault rocks and Fault Mechanisms

R.H. Sibson
Geol. Soc. Lond. vol 133, 1977, p.191-213 1480 citations

1977

Incohesive | Fault breccia (visible fragments >
30% of rock mass)
Fault gouge (visible fragments <
30% of rock mass)

Cohesive Pseudotachylyte (glass, frictional

Foliated

melting)

Breccia 0-10 %
Matrix

Proto cataclasite 10-50% Protomylonite 10-50% Matrix
Matrix

Cataclasite 50-90% Mylonite 50-90% Matrix
Matrice

Ultra cataclasite 90-100 % | Ultramylonite 90-100 %
Matrix Matrix




Fault gouge formed at 3 km of depth along the Bosman fault (South Africa)
during a M=3.7 earthquake in 1997.




Cataclasite formed by grain size reduction, grain rotation and translation +
cementation.




Pseudotachylyte: solidified frictional melt (amorphous material, no crystalline
structure) formed by temperature rise during fast slip.




Mylonites: foliated rocks produced by “plastic” processes

Berthé et al., 1979, JSG
Lister and Snoke, 1984, JGG
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Fault rocks and Fault Mechanisms

R.H. Sibson
Geol. Soc. Lond. vol 133, 1977, p.191-213 1480 citations

From 1977 we have improved our understanding of fault rocks and
deformation mechanisms

Methods

Laboratory analyses:

MO, SEM, TEM, XRD. Rock deformation

experiments

r— DCDTs measure displacement
"I Load cells measure strain
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Foliated Cataclasites

F.M. CHESTER, M. FRIEDMAN and J M. LOGAN

Center for Tectonophysics and Departments of Geology and Geophysics,
Texas A&M University, College Station, TX 77843 (U.S.A.)

(Received September 28, 1984)

ABSTRACT

Chester, F.M., Friedman, M. and Logan, J.M., 1985. Foliated cataclasites. Tectono-
physics, 111: 139—146.

Contrary to recently proposed classifications of fault-related rocks (esp. Wise et al.,
1984), cataclasis associated with brittle faulting can produce well-foliated fault gouge.
Naturally foliated gouge associated with the Punchbowl fault, Los Angeles Co., California
is reproduced in experiments in which only brittle conditions and cataclastic deformation
mechanisms prevailed. Moreover, only a brittle regime of physical conditions is inferred
for the Punchbowl faulting. Classifications of fault-related rocks must accommodate
foliated cataclasites.
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Science 24 November 2000: < Prev | Table of ZOOO N
Vol. 290 no. 5496 pp. 1564-1567

DOI: 10.1126/science.290.5496.1564

REPORT

High Shear Strain of Olivine Aggregates: Rheological and Seismic
Consequences

M. Bystricky’, K. Kunze, L. Burlini, ). -P. Burg

Olivine deformed at 1200 C
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PERGAMON Journal of Structural Geology 23 (2001) 11871202

Experimental investigation into the microstructural and mechanical
evolution of phyllosilicate-bearing fault rock under conditions favouring
pressure solution

B. Bos™, C.J. Spiers

HPT Laboratory, Institute of Earth Sciences, Utrecht University, PO Box 80021, 3508 TA Utrecht, the Netherlands
Received 1 June 2000; accepted 21 November 2000

Abstract

Mature crustal fault zones are known to be zones of persistent weakness. This weakness is believed to result from microstructural
modifications during deformation, such as grain-size reduction and foliation development. Around the brittle—ductile transition, phyllo-
silicates are expected to have a significant effect on fault strength, in particular under conditions favouring pressure solution. To study such
effects, we performed rotary shear experiments on brine-saturated halite/kaolinite mixtures, aimed at investigating the relation between
microstructural and mechanical evolution in a system where pressure solution and cataclasis dominate. The results show significant strain
weakening, and a transition with progressive strain towards more rate-sensitive and less normal stress-sensitive behaviour. This was
accompanied by a microstructural evolution from a purely cataclastic microstructure to a mylonitic microstructure consisting of elongate,
asymmetric clasts in a fine-grained, foliated matrix. The results demonstrate that strain weakening and the development of a typical
‘mylonitic’ microstructure can occur as a consequence of grain-size reduction by cataclasis, and a transition to pressure solution accom-
modated deformation, even in the absence of dislocation creep. The data raise questions regarding the reliability of microstructures as
rheology indicators, as well as on the use of low strain, monomineralic flow laws for modelling crustal dynamics. © 2001 Elsevier Science
Ltd. All rights reserved.
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Foliated Fault rocks formed by:




Fault rock classification & deformation mechanisms

Random fabric Foliated
Incohesive | Fault breccia (visible Cataclasi | Foliated gouge cataclasis
fragments > 30% of rock
mass)
Fault gouge (visible Cataclasi
fragments < 30% of rock
mass)
Cohesive Pseudotachylyte (galss, Frictional | SCC’ tectonites Dissolution-
frictional melting) melting precipitation
Breccia 0-10 % Cataclasis | Mylonites
Matrice
Proto 10-50% Cataclasis | Protomylonite | 10-50% Intracryst.
cataclasite Matrix Matrix Plastic
Cataclasite 50-90% Cataclasis | Mylonite 50-90% Intracryst.
Matrix Matrix Plastic
Ultra 90-100 % Cataclasis | Ultramylonite | 90-100 % | Intracryst.
cataclasite Matrix Matrix Plastic
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Natural fault rocks and microstructures
Lab. experiments for slip behavior and microstructures

1) Fault structure, frictional properties and mixed-mode
fault slip behavior of LANF

2) Heterogeneous strength and fault zone complexity of
carbonate-bearing thrusts

3) Fault structure and slip localization in carbonate-bearing
normal faults

Future directions

Experiments on the role of fluid pressure in fault stability
Heterogeneous faults in the lab



Frictional properties
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Frictional properties

Shear stress
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EQ nucleation phase
Velocity dependence of friction

Velocity Strengthening Velocity Weakening
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EQ nucleation phase

Velocity weakening behavior seems
to occur along sharp slip surfaces
promoted by grain-size reduction
and localization.




EQ nucleation phase

Distributed deformation within
cataclasites & phyllosilicate-rich fault
rocks seem to favor velocity

strengthening behavior.
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Dynamic weakening in High-Velocity Friction Experiments, HVFE
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In granites and in the absence of water it has been shown that
friction-induced melts can lubricate faults Di Toro et al., Science 2006
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In calcite-rich fault rocks thermal decomposition produces
nanoparticles of calcite and lime that cause ultralow friction.
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In calcite-rich fault rocks the on-set of dynamic weakening seems to
be associated with the development of plastic deformations.

HVFE halted at different displacement:
green: at peak stress before weakening
blue: soon after dynamic weakening
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Fault rock classification & deformation mechanisms

Stress
Random fabric Foliated

Incohesive Fault breccia (visible Cataclasi Foliated gouge cataclasis
fragments > 30% of rock
mass)

Random
Fault gouge (visible Cataclasi
fa bI'IC fragments < 30% of rock

mass)

Cohesive Pseudotachylyte (galss, Frictional SCC’ tectonites Dissolution-
frictional melting) melting precipitation

<
8 Breccia 0-10 % Cataclasis Mylonites
Matrice
Proto 10-50% Cataclasis Protomylonite 10-50% Intracryst.
cataclasite Matrix Matrix Plastic
Cataclasite 50-90% Cataclasis Mylonite 50-90% Intracryst.
Matrix Matrix Plastic
Ultra 90-100 Cataclasis Ultramylonite 90-100 % | Intracryst.
cataclasite % Matrix Matrix Plastic
A\

From HVFE (and also from some natural faults) it seems that plastic deformation plays a
key-role in the dynamic weakening of some faults. Plastic deformation is present also
within the elastico-frictional regime (random fabric) .
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The LANF mechanical paradox

Frictional Fault Mechanics under Byerlee’s friction predicts no-slip
normal faults dipping less than 30°.

o Byerlee, PAGEOPH, 1978
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The LANF mechanical paradox

Frictional Fault Mechanics prediction is consistent with the absence of
moderate-to-large earthquakes occurring on normal faults dipping less

then 30° worldwide.

a 8
6 n=28
N 4-
>
T T
90° 80° 70° 60° 50° 40° 30° 20° 10° O°

Fault dip

No M > 5.5 on LANF on positively discriminated rupture planes
worldwide

Collettini & Sibson, Geology, 2001
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However geological records show that LANF seem to be important
structures for accommodating crustal extension.
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The CROPO3 deep seismic reflection profile showed that significant
extension in the Northern Apennines occurs on LANFs

Time-space evolution of the syntectonic basins
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In 2000-2001, during 8
months, more than
2,000 earthquakes
with ML<3.2 have been
recorded by a dense
temporary seismic
network.

Chiaraluce et al. JGR 2007
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Map view of the 621
events located at
<5600 m from the
detachment

A) A constant seismicity
rate 3.5 event/d,
M <2.3, that cannot
explain 1-2 mm/yr

B) Composite focal
mechanisms with a
gently E-dipping plane

C) Multiple events with

highly correlated
waveforms

Chiaraluce et al. JGR 2007
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From 2010
TABQOO infrastructure

50 permanent seismic
stations covering an
area of 120 x 120 km?2

24 continuous geodetic
GPS stations

3 down-hole

seismometers (GLASS
ERC)

Chiaraluce et al. Annals of Geophysics 2014 12
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In 36 months TABOO
recorded 19,422 events
with ML < 3.8
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Exhumed faults e Active faults

x 20 Il S Tyrrhenian moho e
¢ 30~ 30km |
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Seismic images of an Active
LANF.

Ancient exhumed faults to
study fault zone structure
and collect fault rocks for
laboratory studies & rock
deformation exp.




The Zuccale Fault:
displacement 6-8 km
fault exhumation 3-6 km

e - R
Collettini & Holdsworth,
Smith et al., JSG, 2008.
Collettini et al., Geology 2009.




Low-strain domains




Low-strain domains

AccV - Spet Magn
200 kV 5.0 38k

Calcite concentration along major fractures and syn-tectonic precipitation of
calcite and talc along veins



Low-strain domains

.¢~-‘& _/_.

Dt-wo'”"'
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Silica-rich fluid circulation



High-strain domains: interconnected talc rich network




High-strain domains: interconnected talc rich network

Fluid assisted
dissolution and
precipitation
processes

VA.cc.V SpotgMagnem.Det WD |
2000 KVI5 0" B6bX BSE 10.9

DOLOMITE + SILICA + H,O = TALC + CALCITE + CO,
3 MgCa(CO,), + 4 SiO, + H,O =Mg;Si4,0,0((OH), + 3 CaCO; + 3 CO,




High-strain domains: interconnected talc rich network

= Talc lamellae are
B oriented parallel to
. ' the foliation and are
| o W ~ affected by rotation

-_[(_OOI) talc lamellae a of the (001) talc
layers.




High-strain domains: interconnected talc rich network

Interlayer delaminations widespread resulting in talc grain-size
reduction, down to 30 nm, and providing an infinite number of

i Ippi :
poss ble sl PpPINng Planes Collettini et al., Geology, 2009

Viti & Collettini, CMP, 2009




AccY . Spet:Maan ‘

200 kY 5.0~ 38%

AccV Spot Magn - _Det_W®
20,0k BUX SIS BSESI 0"

Low strain I High strain

Cataclasis

Brittle dilatancy &
increase of
permeability

Influx of
silica-rich
fluids

Diss.of Dol
ppt. of cal
and tlc

Interconnected talc-rich
foliation affected by
frictional slip




Which are the frictional properties of these fault rocks?

200 um

Talc grain-size reduction, down fo 30 nm providing infinite number
of possible slipping planes.




2008 ICDP workshop to drill across

the active LANF in the Apennines
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Let’s rock on !

NSF: discoveries

Faults Family and Friction
by Marone & Collettini, 2010

http://www.nsf.gov/discoveries/

—
l' »
|

will survive!

[Do not worry Cristiano, we

Are we doing the right
thing going in the field
with kids?




Let’s rock on !

NSF: discoveries
s gy Faults Family and Friction
... | by Marone & Collettini, 2010

. ,__,_' « | http://www.nsf.gov/discoveries/

e e s~ <

Claudio Collettini ‘;‘




Let’s rock on !

NSF: discoveries

T T Faults Family and Friction
=7 A g ‘ 1 by Marone & Collettini, 2010

Dad! Is this foliated http://www.nsf.gov/discoveries/

fault rock OK for the .

experiments?




.....6 years later
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calcite 43% 39%

tremolite 36% 26%
talc 6% 15%
smectite 15% 20%
phyllosilicates 21% 35%

Differential thermal analysis coupled with mass spectrometer;
XRPD on bulk starting sample;
XRPD on the fine fraction (< 2 um).

2111072008 0312

Collettini, Niemeijer, Viti, Marone, Nature 2009



Double direct biaxial loading apparatus at Penn State
University

Shear stress

Double-Direct Configuration
Biaxial Loading Apparatus

DCDTs measure displacemer
M .
Load cells measure strain

t

Normal stress



Shear stress MPa

Coefficient of friction
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Normal stress MPa

Frictional properties:
solid-foliated vs. powdered

Each rock-type plots along a line
consistent with a brittle failure
envelope, BUT the foliated solid
wafers are much weaker than their
powdered analogues.

Powders show a friction close to
Byerlee's values whereas the foliated
rocks posses values significantly lower,
0.45-0.23, and for each normal stress
solid rocks have a friction coefficient
0.2-0.3 lower than powders

Collettini, Niemeijer, Viti, Marone, Nature 2009



Powders: deformation occurs along a zone characterised by Microstructures

cataclasis with grain-size reduction and affected by shear ~ solid-foliated vs. powdered

localization along R1, Y, B shears (e.g. Logan, 1978; Beeler et al.,
1996; Marone et al., 1998).

On = 50 MPa; displacement = 3.0 cm; u =0.52.

. — p—
¥ By ~ :

- .“,.;,."‘:..' _:‘?"., .




Solid-foliated sliding surfaces located along the pre- . Mi?POSTrUCTureS
existing very fine grained, <2mm. solid-foliated vs. powder'ed

Py
’0-4'\’\ 3
~ g'}' . -
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g along phyllosilicates: friction 0.2-0.3, well b
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Shear stress, t (MPa)
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Effective normal stress, ¢'n (MPa)




Heterogeneous fault zone structure and frictional properties

| Rock-Type | Friction __

Foliated Phyll. 0.3
Foliated Phyll. 0.25
Dolostone 0.7

Mafic 0.7

S W N =




Friction

Velocity dependence of sliding friction
solid-foliated vs. powdered

10 u/s 30 u/s 100 u/s

0.58773
A
058184 b
a
a-b

0.57595 |- l'”\ | I

11826 12242 12657

Displacement um

The velocity dependence of sliding friction is given by (a-b) = Au/AlnV

Negative values of (a-b) reflect velocity weakening behaviour, positive (a-b)
reflect velocity strengthening, which results in stable sliding.



Heterogeneous fault zone structure and frictional properties

Normal stress
O g ® 20 MPa
F = g
1} = M % 4| A 35MPa
0.004 s é s A 50 MPa
O o) 0
. 9 0= O 75 MPa
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A =3
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N
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Mixed-mode slip behaviour: creep + microseismicity

- A
i) 5
= (2)
) s |
-
pr—y
n
=\ >
15-20 km = S TW|
>
Time/Tectonic loading
@ V)
0.361 w 0.611- W
S =
- =
c @ - Q@
2 > ke s
0 0.357 300 o 10 0.606- 300 o
s S, s 2
< My <
100 E = 100 E
0.3521 | =l 0.600- | =
251 259 253 ~ 2.45 247 249 ~—
Displacement (cm) Displacement (cm)

Normal Stress (MPa)
Collettini et al., EPSL, 2011.



Mixed-mode slip behaviour: creep + microseismicity
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similar waveforms




Introduction

Natural fault rocks and microstructures
Lab. experiments for slip behavior and microstructures

1) Fault structure, frictional properties and mixed-mode
fault slip behavior of LANF

2) Heterogeneous strength and fault zone complexity of
carbonate-bearing thrusts

3) Fault structure and slip localization in carbonate-bearing
normal faults

Future directions

Experiments on the role of fluid pressure in fault stability
Heterogeneous faults in the lab



Emilia Earthquake
2012

M, = 6.1

Castelfranco Emilia and
a) Nonantola Structures

Tirrenian
Sea

USGS Shake Map
Perceived Shaaking | Not Felt | Weak e | Strong { Extreme
Potential Damage | None None Light Very Heavy
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2009
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2014

29 May 2012 aftershock sequence



Field studies of regional thrusts that represent exhumed analogues of the
active faults responsible for the seismicity in the Emilia region.
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Distributed deformation in marly limestones

Fiastrone Thrust

Legend

= = = Scaglia Cinerea
— = = Scaglia Variegata
e SCAglia Group
Marne a Fucoidi
= Maiolica
Corniola + CD

Calcare Massiccio
(No vertical exaggeration)

Layered Cover-

! .. Detached Hw{e?



Distributed deformation in marly limestones

Tesei et al., JSG, 2013

Legend
= = == Scaglia Cinerea
— = = Scaglia Variegata
Scaglia Group
Marne a Fucoidi
Maiolica
Corniola + CD

Calcare Massiccio
(No vertical exaggeration)




Deformation
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Loca“ZEd deformatlon in massive I|mestone ) Calcare Mass|cc|o |ower Jurassic

Age of activity, Mio-Plioc.
Displacement 5-10 km
Exhumation 2-3 km

Collettini et al., Geology 2013
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Amorphous-silicate material made of: relict calcite and clay, nhumerous vesicles, poorly crystalline/
amorphous phases, and newly formed calcite skeletal.

COMPO 100kV X800 Tum WD 9.8mm
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Calcite crystal showing decarbonation.

e i
£ -

*\_
-

g : ‘.’v-
COMPO 10.0kV¥Y X7,000 Tum WD 9.4mm




:

©
S
<t
o
1
.

- od
CaR S S
Gt

Calcite crystal showing decarbonation.




Thermal decomposition of calcite initiates at about 600 °C, BUT the fault rock of the
thrust formed at 2-3 km of depth, at temperature below 70° C.

. 32
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Thermal decomposition of calcite initiates at about 600 °C, BUT the fault rock of the
thrust formed at 2-3 km of depth, at temperature below 70° C.

it w : - e

%_«i Itcataclasne - ' ¥ Cataclasite ) e _

EQ slip localized on a thin slip surface ....and the production of
Temperature increase with Decarb + Dehyd. vesiculated material with skeletal crys.

-

COMPO 100kV X7,000 Tam WD 9.4mr

Collettini et al., Geology 2013



Reproduce the heterogeneous fault rocks in

the lab. Clay-rich shear zones

1Vertical Force

RN Ny

l Horizontal Force

Decarbonated material

Portlandite > 90%
1600 Marble < 10%

[2]

-

c

3

() 4001
1001

10 20 30 40 50 60
Position (°2Theta)

Collettini et al., IIRMMS, 2014
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Slide-hold-slide experiments:
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Velocity dependence of friction
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Tesei et al., EPSL, 2014 Hold Time (s)



0.02

Velocity dependence of friction

Shear zones are weak, V. oot : -
strengthening with no re-
strengthening. I © ]
3 oo
0.005 - . o) a 4
os | v : . IS E 8 : * R | 0~ : z ; i 3 a
S 0.5 | . -0.005 w w
= o e 1 10 100 1000
:Ej 04 L Friction | Step Velocity
?’3‘ 0.3 ° : : ¢ -
® L T
& 02 | o? ] 0.08 | J
¢ Re-strengthening
01 _ .
0.06 - i
0 | | | | .
0 5 10SIip (mm)15 20 25 %: 004 . |
Sharp slipping zones are = **| . = I
strong, v. weakening with re- 0 ’ . 3
. r L4 ° *
strengthening. ‘
-0.02 ! | |
1 10 100 1000

Tesei et al., EPSL, 2014 Hold Time (s)



Decarbonated material is weaker then calcite and very velocity weakening

in particular at low sliding velocities.
Carpenter et al., in review
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Shear zones with pressure solution

and sliding along phyllosilicates Localization with cataclasis and

thermal decomposition

Weak, uw = 0.2-0.3 Strong, u = 0.6-0.7

[ ngthenin
Velocity strengthening Velocity neutral/weakening
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How can we extrapolate these two characterization to an entire fault plane?

\

Repeatable EQs ’Cfeta°e°“3 B




Series of geological cross sections across the fault plane
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Tesei et al., EPSL, 2014




Series of geological cross sections across the fault plane

42°N

Tesei et al., EPSL, 2014




Series of geological cross sections across the fault plane

No an o ~io 33
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Tesei et al., EPSL, 2014
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Series of geological cross sections across the fault plane
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Fault plane heterogeneities
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FAULT ZONE

FRICTION PROPERTIES

Weak, ductile

(seismogenesis unlikely)

Tesei et al.,

Seismic

Aseismic

Mixed mode

& ¥

High strength, fast restrengthening, velocity weakening
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Introduction

Natural fault rocks and microstructures
Lab. experiments for slip behavior and microstructures

1) Fault structure, frictional properties and mixed-mode
fault slip behavior of LANF

2) Heterogeneous strength and fault zone complexity of
carbonate-bearing thrusts

3) Fault structure and slip localization in carbonate-bearing
normal faults

Future directions

Experiments on the role of fluid pressure in fault stability
Heterogeneous faults in the lab



USGS Shake Map Emilia Earthquake

Perceived Shaaking |Not Felt | Weak Light Moderate | Strong Very Strong Severe Violent Extreme 2 O 1 2
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~19,000 high-resolution aftershock R R
locations nucleated along causative B R
fault of MW=6.1, 2009 L'Aquila
earthquake.

Seismological fault zone structure

characterization S
S
Valoroso et al., Geology 2014 N ‘
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At the km scale

Along strike, fault
length is ~10 km and
the maximum width
of the fault is ~1.5
km.

Some displacements
are distorted and
denote a degree of
interaction.
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At the outcrop scale

parallel slipping zones
distributed over a
width of about 50 m




Collecting rock samples for microstructural studies & experiments

s g vy

= Pressure solution
== (Calcite veins




le: thin Principal Slipping Zone with parallel slipping planes

+ disaggregation features pointing to decarbonation
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At the nanoscale:
plastic deformation
with twinning,
nanograins & polygonal
structures (with strain-
free calcite crystals)
similar to the one
documented in HVFE at
the early stage of
dynamic weakening
(De Paola et al., in

prep.)




Very high healing rates in particular for CaCo; solutions
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Carpenter et al., in prep.



Very high healing rates favored by dissolution and precipitation
processes during hold periods. Carpenter et al., in prep.

O, = 50 MPa, hold time 3000 s

SEl 10.0k¥Y X100,000 100nm WD 8.4mm



The common theme linking
multiscale observations s
the presence of multiple
slipping planes.

Collettini et al., JSG, 2014

a) FZS from field mapping

Z/v

c) FZS from outcrop

b) FZS from high-resolution aftershocks

w oz

d) Slip zone

20 cm Slip surface m

Cataclasite

Ultracataclasite Nanoscale polysynthetic

twinning  c4icite nano-crystals in

Cataclasite with pressure solution & hydrofractures polygonal arrangement



These multiple slipping planes are the result of different deformation mechanisms including:
Fault growth & interaction

T= - ’ ) ; -l a) FZS from field mapping b) FZS from high-resolution aftershocks
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Collettini et al., JSG, 2014



These multiple slipping planes are the result of different deformation mechanisms including:

Fault growth & interaction

Strength evolution with cementation and healing
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These multiple slipping planes are the result of different deformation mechanisms including:

Fault growth & interaction

~

Strength evolution with cementation and healing

Plastic deformation and decarbonation during co-seismic slip
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carbonate-bearing thrusts

3) Fault structure and slip localization in carbonate-bearing
normal faults

Future directions

Experiments on the role of fluid pressure in fault stability
Heterogeneous faults in the lab



Experiments on the role of fluid pressure in fault stability

R&S friction predicts a frictional instability when the stiffness of the fault (Kc) is
greater than the stiffness of the loading system (K)

k <k, = @n=PDC=0
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Heterogeneous experimental faults

Tesei et al., in progress



Heterogeneous experimental faults

Interaction between EQ-like and
creep like fault patches along a
large (20 x 20 cm), fluid rich
experimental fault.

Tesei et al., in progress






On(2km) = 50 MPa

Earthquake Magnitude

Slipping zone of no thickness AT °C M=3 M=4 M=5 M=6 M=7
(Rice, 2006):

t¢ is the shear resistance of the fault;
p = 2710 kg/m3;

Cp is the heat capacity (962 1/kgK);
V = 1 ms'lis the constant slip velocity; 0
s is the mean co-seismic slip;

k is the thermal diffusivity.

I I I
0.01 0.04 0.1 0.4 1
s, coseismic slip (m)



