
Seismicity models based on 

static stress triggering

Sebastian Hainzl

Landers sequence
Hainzl et al. JGR 2009



King et al. BSSA 1994

Stein Nature 1999

… what everybody knows:

Colorful static stress maps showing generally 
some correlation between

●   aftershock locations and positive stress lobes

●   reduced activity and stress shadows 
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Goal of this lecture is to understand and discuss 
quantitative predictions of the static stress triggering model:

(1) Underlying assumptions

(2) Predictions of the model

(3) Potentials & Limitations (due to unkowns/uncertainties) 
      of model applications

Outline:

(1) Neglect timing of earthquakes - A simple clock-advance model:

     → spatial aftershock distribution & decay
     → aftershock productivity

(2) Time-evolution assuming rate-state-dependent friction:  

     → simple considerations 
     → examples of model applications 
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0

modified from
Hill, BSSA 2008

Coulomb Failure Stress (CFS) change:
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ΔCFS = Δτ - μ Δσn

τ     shear stress   
σn    normal stress

      (including pore
       pressure)  
μ    friction coefficient
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Origin of stress changes can be:

(1) coseismic:

●    dynamic (seismic waves)

●    static (permanent)

(2) aseismic:

●    pore pressure changes

●    continuous or transient creep 

●    visco-elastic deformation

●    dike intrusion

●    …
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M7.2 2008 Iwate-Miyagi Nairiku (IWTH24)
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Let's start with simplest assumptions: 

(1) Constant stress build-up 
      due to tectonic loading

(2) Existence of a population of faults
     where earthquake can occur

(3) Without any stress disturbance:
     Earthquake rate is constant 
    → Poisson model 
    (assumption of seismic hazard assessment)
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pre-stress Stress-change
ΔCFS>0

triggered eartquakes

Hainzl et al. JGR 2010

Critical stress at which
earthquake nucleation

starts

Clock advance - time needed to achieve ΔCFS by 
tectonic loading:

N a=r Δ t=(r / τ̇)ΔCFS

Δ t = ΔCFS / τ̇

Number of triggered events:                                          if  ΔCFS>0 
                                                                                       else Na=0            
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Number of triggered events ~ ΔCFS   (if ΔCFS>0)

Proportionality factor:  c  =  
r
τ̇

 ≈  
V
M 0

Assumption: Similar earthquake mechanisms

Kostrov 1974: τ̇  = 2G ϵ̇ij  = lim
Δ t→∞

1
V Δ t ∑k=1

N

M 0ij
k

 = lim
Δ t→∞

N
V Δ t

M 0ij  = 
r
V

M 0ij

 ≈  
r
V

M 0

Ratio between seismogenic volume and 
the average seismic moment per earthquake
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 =  109.1+1.5M min
b

1.5−b
10(1.5−b)(Mmax−M min)−1

1−10−b (Mmax−M min)

For Gutenberg-Richter distributed earthquakes within [Mmin, Mmax]:

M 0  = ∫
Mmin

Mmax

pdf (M )109.1+1.5 M dM

pdf (M )=ln (10)b
10−b(M−Mmin)

1−10−b(Mmax−Mmin)

Average seismic moment per earthquake (NO time average!):

Proportionality factor c=V/M0 
can be calculated for given b and Mmax (Mmin)
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Na = ( V / M0 )  ΔCFS



Na (x) ~ ΔCFS(x)           (for ΔCFS>0)
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Not necessarily because of:

1. uncertainty of slip inversions

2. unresolvable small scale slip

3. variable receiver mechanisms

4. secondary stress changes 
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Model Prediction: 

No earthquakes in regions 
with ΔCFS<0 (stress shadows)

Observation: 

A significant fraction of earthquakes 
occur in stress shadows ... 
is static stress triggering not working?
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Small scale slip variability

uniform                                   fractal

→ can explain on-fault activation

z=7km

log
10 ( probab ility )



Faults with different orientations always exists 
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Variable receiver mechanisms

Examples:

“unique” mechanism: ΔCFS<0
→ no aftershocks

mean mechanism: ΔCFS<0
but some faults have ΔCFS>0

→ aftershocks ~ blue area

1

0

1

0
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fixed mechanism          variable mechanisms (+-10o)

Variable receiver mechanisms

z=7km

log
10 ( probab ility )
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fixed mechanism          variable mechanisms (+-30o)

Variable receiver mechanisms

NO absolute stress shadows, 
only regions with reduced activation! 

z=7km

log
10 ( probab ility )



Distance decay

Theory (homogeneous elastic full-space): 

M
main

= 2-3                            M
main

=3-4

Felzer & Brodsky, Nature 2006:  

Static stress
cannot be the 
driving force

Far-field:   dynamic stress ~ 1/r2

                      static stress ~ 1/r3

14 / 35   Hainzl



Distance decay

Theory for homogeneous elastic full-space: 

Richards-Dinger et al., Nature 2010:  

improper
selection of

“aftershocks”
does not
allow this

conclusion

Far-field:   dynamic stress ~ 1/r2

                      static stress ~ 1/r3
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Distance decay

Theory for homogeneous elastic full-space: 

Marsan & Lengliné, JGR 2010:  

Far-field:   dynamic stress ~ 1/r2

                      static stress ~ 1/r3

… with an improved statistical attempt 
    to isolate earthquakes causally 
    related to the mainshock:

Exponent = 1.7-2.1
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Separation based on the smallest space-time distance

                    n
ij
 ~ Δt rd 10-bM

between an event and all preceding events, 
where d is the assumed fractal dimension.

California       d=1.8

“time” log(Δt)-bM/2

“d
is

ta
nc

e”
 

lo
g(

r)
 –

 b
 M

 /
 2

Distribution of nearest neighbors

Moradpour et al. JGR 2014

Method based on
Biasi & Paczuski 2004
Zaliapin et al. 2008
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γ=0.6
q=0.35
d=1.2

M
main

=3-4

– all
– Δt <1 hour

L
m

~rupture length (M)

~ seismogenic
width

~r0.6

~r-1.35

~r-2.2

Epicenter distance (m)
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3 scaling 
regimes

Southern 
California



… from empirical observations back to static stress-triggering:

Analysis for synthetic
mainshock ruptures:

- select magnitude M

- uniform (or fractal) slip

- empirical relations between M and slip/area

- epicenter randomly chosen within rupture area

- effective friction coefficient:   = 0.5

- elastic half-space (or layered half-space)
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Δr
r

epicenter

Linear aftershock density:

P(r) ~ ΔCFS(r) H(ΔCFS)  A / Δr

A ~ (r+Δr/2)d – (r–Δr/2)d     

A: seismogenic area at distance r  
d: fractal fault dimension (uniform: d=2)  

Aftershocks in the 
hypocenter depth layer:

Far field:       ΔCFS ~ r-3

                            A ~ r

                    →  Na ~ r-2  

rupture 
length

M=2.5

surface 
effect
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… but aftershocks occur not only at the hypocenter depth layer:

Integration over depth interval

much slower decay!
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M=2.5



Adaption to Southern 
California seismicity by
random selection of 
depth & focal mechanism

Yang, Hauksson & Shearer (2012)
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adapted model
forecast 

d=2, uniform

M=2.5



Adaption to Southern 
California seismicity by
random selection of 
depth & focal mechanism

Yang, Hauksson & Shearer (2012)
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adapted model
forecast 

d=1.8, fractal

M=2.5



Independent evaluation by means of the ETAS model:

Is d=1.8 a reasonable value for background activity?
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California seismicity         ETAS with d=1.8 

M≥3

Method based on
Beauval et al., BSSA 2006



R1.8

R1.6
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Scaling of the correlation integral:

scaling exponent = fractal dimension

d=1.8 in 
agreement

with California
seismicity
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Productivity of aftershocks 

N a=∫
0

∞

 ΔCFS(r )H (ΔCFS)  A (r)  W  /  M 0  d r

W     = 10 km
b      = 1.0
Mmin =-2.0
Mmax= 7.5

California:  Helmstetter et al., JGR 2005 



Bath law

                 California

                 Felzer et al. 
                  JGR 2002

o

x   Model

Empirical observation:   <Ma,max> =  Mm - 1.2    (Bath, 1965)           
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Largest aftershock magnitude as another 
way to compare with observations:



… thus static stress triggering can explain 
    first-order aftershock characteristics regarding
    total numbers and spatial distribution.

→ static stress changes seem to be the major 
     driving force for aftershock nucleation!

However,  the model misses so far the 
                  timing of aftershocks
     and the contribution of aftershock induced 
              secondary stress changes
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modified ETAS-model:

… where productivity scaling and spatial kernel are replaced

R
RR

One possibility:  A statistical model extension

      without slipmodel        with slipmodel

Bach & Hainzl, JGR 2012; Zakharova et al., JGR 2013
… currently tested in CSEP New Zealand

Ogata, 1988
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Another possibility:  

Rate- and state-dependent frictional nucleation model 

 Dieterich, JGR 1994

from lab-derived friction law

to statistical response of
fault populations

stress step:
      ∆S 

r     background rate 
A    friction parameter
      tectonic stressing
      rate

→ relaxation time:

ta=
Aσn

τ̇

R=r / τ̇ γ d γ=(d t−γ d S)/Aσn

R (t ,Δ S)=
r

1+(e
−

Δ S
A σn−1)e

−
t
ta

&

τ̇
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missed events

triggered events

# triggered (+ΔCFS) = # missed (–ΔCFS)
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Response to a stress step of ±ΔCFS:



time after stress step

Ntot = (     ) ΔCFS  (same as in the clock advance model!) 
          # triggered = # triggered   if        = constantr / τ̇

r / τ̇
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In the case of different stressing rates:



rainfall

pore pressure
diffusion

Earthquake activity
at Mt. Hochstaufen

SE Germany

Hainzl et al. GRL 2006
Hainzl et al. JGR 2013
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Advantage: Earthquake rate can be determined for complex stress 
                   histories resulting from aseismic & coseismic processes

Example:



rainfall

earthquake
rate

Earthquake activity
at Mt. Hochstaufen

SE Germany

Hainzl et al. GRL 2006
Hainzl et al. JGR 2013

depth integrated model
observation
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Advantage: Earthquake rate can be determined for complex stress 
                   histories resulting from aseismic & coseismic processes

Example:
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Challenge: Large uncertainties of ΔCFS-calculations

M9 Tohoku
aftershock
sequence

Model integration by Monte-Carlo sampling …  Cattania et al. JGR 2014



Model performance improves significantly 
if uncertainties are systematically taken into account:
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M9 Tohoku
aftershock
sequence

Cattania et al. 
JGR 2014



Summary

Static stress triggering can explain first-order characteristics:

- spatial distribution

- productivity

- Omori aftershock decay

However: 

Uncertainties of the actual stress state (use of Poisson 
model for the initial state) and the ΔCFS-calculations 
are large and limit the forecast ability.

Proper accounting for uncertainties is necessary for 
hypothesis testing and improved forecasts.
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Thank you!

Potsdam, June 14-19, 2015

https://statsei9.quake.gfz-potsdam.de
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